Page 51 - ILAE_Lectures_2015
P. 51

50. Matalon D, Goldberg E, Medne L, Marsh ED. Confirming an expanded spectrum of SCN2A mutations: a case
       series. Epileptic Disord 2014;16(1):13-8.

51. Johnston AJ, Kang JQ, Shen W et al. A novel GABRG2 mutation, p.R136*, in a family with GEFS+ and extended
       phenotypes. Neurobiol Dis 2014;64:131-41.

52. Subaran RL, Conte JM, Stewart WC, Greenberg DA. Pathogenic EFHC1 mutations are tolerated in healthy
       individuals dependent on reported ancestry. Epilepsia 2015;56(2):188-94.

53. Pal D, Helbig I. Commentary: Pathogenic EFHC1 mutations are tolerated in healthy individuals dependent on
       reported ancestry. Epilepsia 2015;56(2):195-6.

54. Ishida S, Picard F, Rudolf G et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet
       2013;45(5):552-5.

55. Dibbens LM, de Vries B, Donatello S et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci.
       Nat Genet 2013;45(5):546-51.

56. Lal D, Reinthaler EM, Schubert J et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol
       2014;75(5):788-92.

57. Bar-Peled L, Chantranupong L, Cherniack AD et al. A tumor suppressor complex with GAP activity for the Rag
       GTPases that signal amino acid sufficiency to mTORC1. Science 2013;340(6136):1100-6.

58. Scheffer IE, Heron SE, Regan BM et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause
       focal epilepsy with brain malformations. Ann Neurol 2014;75(5):782-7.

59. Lim JS, Kim WI, Kang HC et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading
       to intractable epilepsy. Nat Med 2015;21(4):395-400.

60. Heron SE, Smith KR, Bahlo M et al. Missense mutations in the sodium-gated potassium channel gene KCNT1
       cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 2012;44(11):1188-90.

61. Barcia G, Fleming MR, Deligniere A et al. De novo gain-of-function KCNT1 channel mutations cause malignant
       migrating partial seizures of infancy. Nat Genet 2012;44(11):1255-9.

62. Suls A, Jaehn JA, Kecskés A et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic
       epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 2013;93(5):967-75.

63. Mirzaa GM, Parry DA, Fry AE et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause
       megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 2014;46(5):510-5.

64. Miller AR, Hawkins NA, McCollom CE, Kearney JA. Mapping genetic modifiers of survival in a mouse model
       of Dravet syndrome. Genes Brain Behav 2014;13(2):163-72.

65. Mulley JC, Hodgson B, McMahon JM et al. Role of the sodium channel SCN9A in genetic epilepsy with febrile
       seizures plus and Dravet syndrome. Epilepsia 2013;54(9):e122-6.

66. Mulley JC, Scheffer IE, Desai T et al. Investigation of the 15q13.3 CNV as a genetic modifier for familial
       epilepsies with variable phenotypes. Epilepsia 2011;52(10):e139-42.

67. Johnson MR, Behmoaras J, Bottolo L et al. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant
       gene network in human epileptic hippocampus. Nat Commun 2015;6:6031.

68. Thomas RH, Zhang LM, Carvill GL et al. CHD2 myoclonic encephalopathy is frequently associated with self-
       induced seizures. Neurology 2015;84(9):951-8.

69. Galizia EC, Myers CT, Leu C et al. CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain
       2015;138(Pt 5):1198-207.

70. Grover S, Kukreti R. HLA alleles and hypersensitivity to carbamazepine: an updated systematic review with meta-
       analysis. Pharmacogenet Genomics 2014;24(2):94-112.

71. McCormack M, Alfirevic A, Bourgeois S et al. HLA-A*3101 and carbamazepine-induced hypersensitivity
       reactions in Europeans. N Engl J Med 2011;364(12):1134-43.

72. Chen P, Lin JJ, Lu CS et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl
       J Med 2011;364(12):1126-33.

73. Yip VL, Marson AG, Jorgensen AL, Pirmohamed M, Alfirevic A. HLA genotype and carbamazepine-induced
       cutaneous adverse drug reactions: a systematic review. Clin Pharmacol Ther 2012;92(6):757-65.

74. Chung WH, Chang WC, Lee YS et al. Genetic variants associated with phenytoin-related severe cutaneous adverse
       reactions. JAMA 2014;312(5):525-34.

75. Brigo F, Storti M. Antiepileptic drugs for the treatment of severe myoclonic epilepsy in infancy. Cochrane
       Database Syst Rev 2013;11:CD010483.

76. Wolking S, Becker F, Bast T et al. Focal epilepsy in glucose transporter type 1 (Glut1) defects: case reports and
       a review of literature. J Neurol 2014;261(10):1881-6.

77. Ragona F, Matricardi S, Castellotti B et al. Refractory absence epilepsy and glut1 deficiency syndrome: a new
       case report and literature review. Neuropediatrics 2014;45(5):328-32.

78. Ramm-Pettersen A, Nakken KO, Haavardsholm KC, Selmer KK. Occurrence of GLUT1 deficiency syndrome in
       patients treated with ketogenic diet. Epilepsy Behav 2014;32:76-8.

79. Mills PB, Camuzeaux SS, Footitt EJ et al. Epilepsy due to PNPO mutations: genotype, environment and treatment
       affect presentation and outcome. Brain 2014;137(Pt 5):1350-60.

80. Al-Baradie RS, Chaudhary MW. Diagnosis and management of cerebral folate deficiency. A form of folinic acid-
       responsive seizures. Neurosciences (Riyadh) 2014;19(4):312-6.

81. Milligan CJ, Li M, Gazina EV et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine.
       Ann Neurol 2014;75(4):581-90.

82. Pierson TM, Yuan H, Marsh ED et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized
       therapy with memantine. Ann Clin Transl Neurol 2014;1(3):190-198.

83. Hirose S, Scheffer IE, Marini C et al. SCN1A testing for epilepsy: application in clinical practice. Epilepsia
       2013;54(5):946-52.
   46   47   48   49   50   51   52   53   54   55   56