

364: Assessment of Functional Connectivity Patterns in Children with Epilepsy with Myoclonic-Atonic Seizures

Purva R. Choudhari, MD¹, Xiaoxiao Tao, Ph.D.², Lin Li, Ph.D.², Anatol Bragin, Ph.D.³, Katherine Nickels, MD⁴, Michael Ciliberto, MD⁵, Laurel Reed, MD⁶, Charuta Joshi, MBBS¹

¹University of Texas Southwestern Medical Center, Division of Pediatric Neurology, ²University of North Texas, Dept of Biomedical Engineering, ³University of California Los Angeles, Division of Neurology, ⁴Mayo Clinic, Division of Child & Adolescent Neurology, ⁵University of Iowa, Division of Pediatric Neurology, ⁶University of Michigan Health, Division of Pediatric Neurology

INTRODUCTION

- Epilepsy with myoclonic-atonic seizures (EMAtS) (formerly Doose syndrome) is a rare developmental and epileptic encephalopathy (DEE).
- Up to 50% enter a Stormy Phase (SP) of worsening seizures and recurrent non-convulsive status epilepticus.
- Early diagnosis and management of EMAtS are associated with improved seizure and developmental outcomes.
- Lennox Gastaut Syndrome (LGS) is a well-known DEE that is often an EMAtS-SP mimicker.

OBJECTIVES

To distinguish the functional connectivity patterns among electroencephalographs (EEGs) of children diagnosed with a) SP, b) non-SP EMAtS, c) LGS, and d) normal EEGs in children without epilepsy.

METHODS

- De-identified, non-seizure epochs of scalp EEGs (using 10-20 International system) were obtained from the University of Texas Southwestern, Mayo Clinic Rochester, University of Iowa, and University of Michigan Health.
- EEG cohorts: G1 SP (n=20), G2 control/normal (n=12), G3 non-SP EMAtS (n=5), & G4 LGS (n=15)
- 100 second-epochs were randomly selected from each subject in each group.
- Data samples were filtered into 5 separate band frequencies using the two-way least-squares FIR-Butterworth – filter order.
- Group-level statistics with one-way ANOVA with multiple comparisons
- 10 regions of interest: the right and left prefrontal (FP), frontal (F), center (C), parietal (P), and occipital (O)

_ ×10			
2		1	~
0 -			~
-2	1	1	
_0	100	200	30
	4		
2 × 10			
0			~
0			<u> </u>
-2	100	200	2
0	100	200	3
5000	· ^	<u> </u>	\wedge
0~	$\sim \sim$	\sim	\sim
-5000	I		
0	100	200	3
2000	1	1	
2000	~~~~~	~~~~~	\sim
-2000 -			
0	100	200	3
0	100	200	0
5000			
5000	'	'	
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
-5000			-
0	100	200	3
1000	1	1	
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.when	-
-1000			
0000			
0	100	200	- 3
0	100	200	3

METHODS: NETWORK ANALYSIS

RESULTS

• No significant differences in within-network and between-network connectivity among the four cohorts. • Total connectivity strength in different band frequencies were greater in the epileptic disorder EEGs (G1, G3, G4) than the connectivity strength in the normal EEGs (G2).

CONCLUSIONS

- Within Network Connectivity Strength

- LGS EEGs demonstrated greater connectivity strength, and thus hypersynchronisation and hyperexcitability, than SP and non-SP EMAtS EEGs.
- This first step could help identify future potential EEG biomarkers to distinguish EMAtS from LGS.
- Future studies will further explore the connectivity strength differences in the alpha frequency band.
- A future prospective study can lead to larger sample sizes, which will further clarify connectivity differences.

REFERENCES

- Trivisano M, Specchio N, Cappelletti S, et al. Myoclonic astatic epilepsy: an agedependent epileptic syndrome with favorable seizure outcome but variable cognitive evolution. Epilepsy Res. 2011;97(1-2):133-141.
- Joshi C, Nickels K, Demarest S, Eltze C, Cross JH, Wirrell E. Results of an international Delphi consensus in epilepsy with myoclonic atonic seizures/ Doose syndrome. Seizure. 2021;85:12-18.
- 3. Nickels K, Kossoff EH, Eschbach K, Joshi C. Epilepsy with myoclonic-atonic seizures (Doose syndrome): Clarification of diagnosis and treatment options through a large retrospective multicenter cohort. *Epilepsia*. 2021;62(1):120-127.
- 4. Liang JG, Lee D, Youn SE, Kim HD, Kim NY. Electroencephalography Network Effects of Corpus Callosotomy in Patients with Lennox-Gastaut Syndrome. Front Neurol. 2017;8:456. Published 2017 Sep 4. doi:10.3389/fneur.2017.00456
- 5. Hu DK, Mower A, Shrey DW, Lopour BA. Effect of interictal epileptiform discharges on EEG-based functional connectivity networks. Clin Neurophysiol. 2020;131(5):1087-1098. doi:10.1016/j.clinph.2020.02.0144
- Y. Zhou, J. You, F. Zhu, A. Bragin, J. Engel and L. Li, "Automatic Electrophysiological Noise Reduction and Epileptic Seizure Detection for Stereoelectroencephalography," 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 2021, pp. 107-112, doi: 10.1109/EMBC46164.2021.9630651.
- 7. Kayser J, Tenke CE. On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. Int J Psychophysiol. 2015 Sep;97(3):171-3. doi: 10.1016/j.jpsycho.2015.06.001. Epub 2015 Jun 10.

DISCLOSURES

Funding of support: L.L (1R16GM146689), L.L & A.B (1R01NS033310-27).

