Cannabidiol treatment in intractable paediatric epilepsy – a pre and post treatment video-EEG study

Dr Yeeshu Singh, Ms Sandra Gurr, Ms Kylie Hale, Dr Geoff Wallace, Dr Vishal Kapoor, Dr Stephen Malone

Queensland Children's Hospital, Centre for Studies in Rare Developmental Disorders, Brisbane Australia Stephen. Malone@health.qld.gov.au

Introduction

- There is Increasing evidence of the effectiveness of Cannabidiol (CBD) in epilepsy
- However non-blinded studies in CBD may be affected by the influence of carer perception
- Even 'blinded' studies susceptible to influence if CBD is obvious to patient/carer
- An independent assessment of effect of CBD treatment would be ideal
- Limited evidence of the use of EEG in assessing CBD therapeutic effect in children

Objectives

- **Primary:** Determine if there is improvement in vEEG patterns (seizures and interictal features) in patients with refractory epilepsy between baseline and 3-months post-treatment with addon CBD (Epidiolex®)
- Secondary: Explore Carer reported information on seizure and QOL outcome, clinical data (at 3) months of treatment, and through the treatment course), and correlate to EEG data

Methods

- Children (2-18 yrs) with refractory epilepsy of varied aetiologies on the CBD Compassionate Access Scheme (CAS) at QCH (2017 to 2019)
- Inclusion criteria:
- Daily seizures for the past six months.
- >=1 epilepsy-related hospital admit last year
- Failure of at least 5 ASM's
- Between 1-4 baseline ASM's at stable doses

Ictal Analysis: 12186 Seizures (Spasms 4430, Tonic 3644, Myoclonic 1664)

As a group, **no difference in total EEG** seizure count pre and post CBD studies, including in DS,LGS,Mixed Aetiology group

Variable Total Final Agreed on seizures Pre Post					
Focal seizures Pre Post					
Focal with bil tonic.clo Pre Post					
Tonic seizures Pre Post					
Myoclonic seizures Pre Post					
Spasms Pre Post					
Absence seizures Pre Post					
Focal > 5min non con Pre					

Post

Methods

• CBD dosing between 5-25 mg/kg/day

• Regular review of seizure outcome, QOL/Global impression Change (GIC), safety monitoring • 24-hr Video-EEG (vEEG) was obtained prior to commencement of CBD, and at 3 months. • Two independent reviewers (YS,SM) reviewed de-identified studies for ictal and interictal features. • EEG : interictal features including Epileptiform and ESES features, and Ictal - focal, focal with tonic clonic, spasms, Myoclonic, tonic, Absences, convulsive and non-convulsive Status Epilepticus • Interictal spike load (spike index) using automatic spike detector (Persyst[®])

Interictal Analysis : No differences in visual and automated spike analysis

Interrater agreement lowest for tonic (60%), focal (73%), Myoclonic (74%), Spasms (87%)

	Mean (±sd)	Median (IQR)	P value
	134 (±202.98) 125.28 (±177.62)	31 (3-178) 50 (2-162)	0.7
	Mean	Median	P value
	22.55 (±79.06) 11.07 (±36.43)	0 (0-2.5) 0 (0-2)	0.38
ic	0.24 (±1.21) 0.63 (±2.15)	0 (0-0) 0 (0-0)	0.25
	38.6 (±131.46) 38.94 (±115.43)	1 (0-8.5) 1 (0-12)	0.97
	13.24 (±70.32) 22.93 (±96.95)	0 (0-1) 0 (0-0.75)	0.67
	52.22 (±146.57) 44.09 (±113.16)	0 (0-9.25) 0 (0-20.5)	0.64
	8.59 (±56.74) 9.33 (±55.56)	0 (0-0) 0 (0-0)	1
,	0.13 (±0.75) 0.11 (±0.48)	0 (0-0) 0 (0-0)	0.85

Results

47 patients (F=26), Av age: 10.3 y 35 patients with DEE LGS=14, DS=6, Other=27 ASM av 3.4 (CLB=27, VPA=22) ASM changes through study N=26 CLB reduction N=18

Total Carer reported seizures	N	Median	Mean	IQR	p value
Seizures baseline	40	49	159	180	
Seizures at 3 months	39	18	66	31	0.002
Subgroup analysis					
LGS Baseline seizures	12	48	98	81	
Seizures at 3 months	12	19	28	25	0.06
Dravet Syndrome Baseline seizures	5	72	195	126	
Seizures at 3 months	5	36	121	69	0.12
Non LGS No Dravet group Baseline	23	49	253	208	
Seizures at 3 months	22	14	24	88	0.019

Carers reported seizures improved at 3 months, this noted in the **non-LGS/DS groups**

Carer's reported seizures Where GIC Significant Improved	Ν	Median	Mean	p value
Seizures baseline	12	61	251	
Seizure at 3 months	12	8.5	86	0.01

Carers reporting **most GIC improvement** (N=12) had significant improvement in EEG seizures

Discussion

- This study adds to sparse literature on prolonged EEG findings in those treated with CBD, and cases of EE/DEE in general
- No change in vEEG seizures in this highly selected cohort with severe epilepsy and DEE
- However improvement of EEG seizures in those reporting significant improved GIC, may indicate some effect of CBD in a subset of patients
- Limitations with ASM changes including CLB
- Limitations with 3-month follow-up period
- Highlights the challenges of vEEG/clinical assessment in those with EE/DEE
- Types of seizures most frequently seen in this study may not = QOL (e.g. spasms, myoclonus)
- High-frequency EEG sz types may be less relevant to patient and carers
- May not be able to generalize study findings to less severe forms of epilepsy

ACKNOWLEDGEMENTS

 GW Pharmaceuticals sponsored the CAS at the QCH, including funding of a clinical-research fellowship (YS).

•SM has acted as a speaker for Chiesi and received travel support, speaker fees which have returned to the department.

•GW were not involved in study design or analysis of results.

•Thanks to Dr Anne Bernard (QCIF) for Statistical Assistance

•Special thanks to support staff at the Centre for Studies in Rare Developmental Disorders at QCH, especially Ms Emily Milburn, and Dr Geoff Wallace who ran the clinical aspects of the study single-handedly over a 4-year period

