

What are the value of clinical factors for genetic testing utility in infantile developmental and epileptic encephalopathies?

Seda Kanmaz¹, Yavuz Ataș¹, Dilara Ece Toprak¹, Cemile Büşra Ölçülü¹, Tuğçe İnce¹, Gürsel Şen¹, Özlem Yilmaz¹, Enise Avci Durmusalioglu², Esra Işik², Tahir Atik², Özgür Cogulu², Gül Aktan¹, Sarenur Gökben¹, Sanem Yılmaz¹, Hasan Tekgül¹

¹Department of Pediatrics, Division of Child Neurology, and ²Division of Pediatric Genetics, Ege University Medical Faculty, Türkiye

OBJECTIVE

To identify the predictive value of evidence-based pre-defined clinical factors for genetic testing results in infantile developmental and epileptic encephalopathies (DEEs).

PATIENTS & METHODS

A comparative study was conducted with 166 patients diagnosed with infatile DEEs (< 3 years of age).

Two study groups were designed;

- Group I (gene-named DEEs): 127 patients
- Group II (unknown-etiology DEEs with WES): **39 patients**

The following 16 independent predefined clinical factors in terms of genetic variant positivity in both groups were examined with univariate and multivariate analyses: (1) gender, (2) type of seizure, (3) seizure frequency, (4) age at seizure onset (neonatal, <2 years), presence of (5) epileptic spasm (6) tonic seizure, (7) genetic stigma, (8) abnormal MRI, (9) special patterns (10) abnormal metabolic screening, on EEG, (11) febrile seizure, (12) status epilepticus, (13) family history of epilepsy, (14) comorbidity, (15) consanguinity, and (16) intellectual impairment (Table1).

in patients with infantile DEEs

Clinical factors		Gen-named DEEs n (%) 127 (76.5)	Unknown DEEs with WES n (%) 39 (23.5)	р
Gender	Female	69 (54.3)	19 (48.7)	0.539
	Male	58 (45.7)	20 (51.3)	
Гуре оf	Focal	32 (25.5)	8 (21.1)	0.233
seizure	Generalized	35 (27.6)	16 (42.1)	
	Multiple	60 (47.2)	14 (36.8)	
Presence of epileptic spasm		47 (37)	24 (61.5)	0.007
Presence of tonic seizure		32 (25.2)	11 (28.2)	0.708
Seizure	Neonatal period	19 (15.2)	5 (13.5)	0.800
onset	< 2 years	122 (97.6)	32 (86.5)	0.006
Seizure	1-4/day	63 (52.5)	25 (64.1)	0.436
requency	1-4/week	26 (21.7)	5 (12.8)	
	1-4/month	25 (20.8)	6 (15.4)	
	1-4/year	6 (5)	3 (7.7)	
Special patterns on EEG		70 (57.4)	28 (87.5)	0.002
Abnormal MRI		52 (40.9)	20 (51.3)	0.255
Abnormal metabolic screening		15 (12.2)	- (0.024
History of febrile seizure		31 (24.4)	2 (5.1)	0.006
Presence of status epilepticus		58 (45.7)	12 (30.8)	0.099
Family history of epilepsy		31 (24.4)	6 (15.4)	0.236
Consanguinity		41 (41.4)	11 (31.4)	0.297
Presence of genetic stigma		63 (49.6)	25 (64.1)	0.113
Intellectual	Normal	13 (10.2)	3 (7.9)	0.041
status	Mild impairment	84 (66.1)	18 (47.4)	
	Severe impairment	30 (23.6)	17 (44.7)	
Presence of	comorbidity	41 (32.3)	6 (15.4)	0.040

Table 1. Predefined clinical factors for genetic testing

clinical parameters, six predominant Among the predictors were defined for a negative/positive result of genetic testing with univariate analysis; (1) history of **febrile seizure** (*predominant in gene-named DEEs*), (2) age at seizure onset < 2 years (more in gene-named) DEEs), (3) presence of epileptic spasm (prominent in unknown group), (4) presence of special EEG pattern (prominent in unknown DEEs), (5) comorbidity (more in gene-named DEEs), and (6) intellectual status (severe impairment in gene-named DEEs). However, all predictors except the history of febrile seizure were statistically significant in multivariate analysis (Table 2).

CONCLUSIONS

This study revealed six predominant predictors for genetic testing in the presented infantile DEEs cohort. Each clinical factor might be indicative of a welldefined electroclinical syndrome or a gene named DEEs. However, the presence of more special patterns on EEG and a high incidence of infantile spam-type seizures in the WES-negative DEEs group indicate the necessity to further genetic diagnostic investigation (reanalysis of WES, WGS, RNA sequencing, reverse fenotyping, and genomic mapping analysis) in those patients.

RESULTS

Univariant analysis	HR	95 % CI	ľ
History of febrile seizure	5,974	1.361-26.226	l
Presence of epileptic spasm	2.723	1.301-5.702	l
Comorbidity	2.622	1.018-6.753	l
Age at seizure onset < 2 years	6.354	1.442-28.007	l
Intellectual status	2,644	1.209-5.786	l
Special EEG pattern	5,2	1.718-15.738	l
Multivariant analysis	HR	95 % CI	ľ
Presence of epileptic spasm	2.141	1.099-12.335	l
Comorbidity	8,745	2.471-30.949	l
Age at seizure onset < 2 years	7.773	5.548-1723,15	l
Intellectual status	3.850	1.284-11.545	l
Special EEG pattern	7.334	1.260-42-701	l

 Table 2 . Univariate and multivariate analysis

REFERENCES

1.Rochtus A, Olson HE, Smith L, et all. Genetic diagnoses in epilepsy: The impact of dynamic exome analysis in a pediatric cohort. Epilepsia. 2020 Feb;61(2):249-258. doi: 10.1111/epi.16427

2. Hansen TF, Rubboli G, Møller RS, Group DCCRS. Impact of Genetic Testing on Therapeutic Decision-Making in Childhood-Onset Epilepsies-a Study in a Tertiary Epilepsy Center. Neurotherapeutics. 2022 Jul;19(4):1353-1367. doi: 10.1007/s13311-022-01264-1.

3. Hieu NLT, Thu NTM, Ngan LTA, et all. Genetic analysis using targeted exome sequencing of 53 Vietnamese children with developmental and epileptic encephalopathies. Am J Med Genet A. 2022 Jul;188(7):2048-2060. doi: 10.1002/ajmg.a.62741.

4. Essajee F, Urban M, Smit L, et all. Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure. 2022 Oct;101:197-204. doi: 10.1016/j.seizure.2022.09.001.

CONTACT INFORMATION

seda.kanmaz@ege.edu.tr hasan.tekgul@ege.edu.tr 00 90 232 390 12 55 - Izmir / Türkiye

INTERNATIONAL CHILD