Clinical Evaluation of Childhood Rare Genetic Epilepsies; Multicentric collaboration study

Yİğithan Güzin, Pakize Karaoğlu, Bülent Ünay, Ayşe Tosun, Dilek Çavuşoğlu, Hande Gazeteci Tekin, Ayşe Nur Coşkun, Seçil Oktay, İlknur Cankurt, Semra Hız Kurul, Gülten Öztürk, Ebru Arhan, Selvinaz Edizer, Mutluay Arslan, Müge Ayanoğlu, Ayşen GÖK, Dilsad Türkdogan, Uluç Yiş, Tuba Hirfanoğlu, Serdar Pekuz, Olcay Ünver, Ünsal Yılmaz, Aycan Ünalp

INTRODUCTION

As new generation sequencing methods develop, rare epilepsy is increasing in number and is a burden on national health systems. Community building among rare epilepsies fuels collaboration, research, and resource development (1). The estimated annual incidence of single-gene epilepsies in the well-defined population is 1 in 2120 live births (2). Recent advances in molecular genetics have led to the identification of many genes related to epilepsy. The prevalence of multiple comorbidities in children with rare epilepsy, especially those diagnosed with epilepsy in the first year of life, is high and medically complex. Comorbidities should be carefully considered in the diagnosis and treatment of children with rare epilepsy (3). This multicentric study evaluated the clinical features of children diagnosed with genetic epilepsies.

METHODS

Seizures and epilepsy syndromes were classified based on the ILAE terminology. We surveyed demographics, clinical findings, imaging studies, Electroencephalographies, medications. The neuromotor developmental stage was examined. The concomitant comorbid diseases were noted.

Physical examination	
Neuromotor developmental delay	116 (74.4%)
Microcephaly	80 (51.3%)
Hypotonia	53(34%)
Normal	33(3170)
Brain MRI findings	
Corpus callosum involvement	11(7.1%)
Cerebral atrophy	10(64%)
Cerebral ve cerebellar atrophy	15(0.6%)
	(9.070)
	2(1.5%)
Periventricular leukomalacia	4 (2.6%)
Other	18 (11.5%)
Normal	96 (61.5%)
Main types of seizures	87 (33.8%)
	/ð (JU%)
Tonic	22 (14.1%)
Epileptic spasm	15 (9.6%)
Myoclonic	14 (9%)
Atonic	6 (3.8%)
Clonic	4 (2.6%)
Other	17 (10.9%)
EEG	
Normal	19 (12.2%)
Focal	59 (37.8%)
Generalized	78 (50%)
Seizure frequency	
Daily	30 (19.3%)
More than once a week	16(10.3%)
Less than one a week	13 (8.3%)
More than one in a month	23 (14.7%)
Less than one in a month	74 (47.4%)
The number of drugs used	
Without medication	3(1.9%) 30(19.2%)
2 drugs	42 (26.9%)
3 drugs or more	81(52%)
Sodium valproate	31 (19.9%)
Clobazam	15 (9.6%)
Levetirecetam	9(5.8%) 9(5.8%)
Carbamazepine	6 (3.8%)
Ketogenic diet therapy	5 (3.2%)
Stiripentol Comorbidities	4 (2.6%) 128 (82%)
Intellectual disability	110 (70.5%)
Developmental delay	50 (32.1%)
Autism	20(12.8%) 11(7.1%)
Attention deficit hyperactivity disorder	7 (4.5%)
Others	6 (3.9%)

Table 1. Clinical feaures of the patients.

RESULTS

We included 156 patients from the nine tertiory health centers in our study. The median age was forty months old. Eighty (51.3%) patients were female and 76 (48.7%) were male. The onset of the seizure was six months (median). Fifty-nine (37.8%) patients had a family history of epilepsy. Sixty (%36,5) patients had consanguinity among parents.

The genetic mutations were distributed to 36 patients (23,1%) SCN1A, 14 (9%) with KCNQ2, 10 (6,4%) PCDH19, 6 (3,8%) with SCN8A, 5 (3,2%) with SLC2A1, 5 (3,2%) with WWOX, respectively. The remaining 80 patients (%51,3) were with other mutations. The clinical characteristics and other findings were tabled below (Table 1). It was observed that the neuromotor development of the patients regressed in the follow-up (p=0.001).

CONCULSION

Rare genetic epilepsies may not remain rare in the future with the rapid advances in genetic diagnostic methods. Despite using multiple antiseizure medications, most of our patients had drug-resistant epilepsy, and concomitant developmental delay. We observed that the degree of developmental delay varied according to the mutation type. Since a complete cure cannot be achieved in the vast majority of these further with patients studies centers' collaboration might help improve therapeutic decisions and personalized treatment methods.

REFERENCES

¹⁻ Baalen A, Borggraefe I, Eschermann K, Hartlieb T, Kiwull L, Pringsheim M, Wolff M, Kudernatsch M, Wiegand G, Striano P, NETRE Kluger G: Consortium Network for Therapy in Rare Epilepsies (NETRE): Lessons From the Past 15 Years.von Stülpnagel C, van.Front Neurol. 2021 Jan 14;11:622510

²⁻Symonds JD, Zuberi SM, Stewart K, et al. Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain. 2019;142(8):2303-2318. doi:10.1093/brain/awz195

³⁻Ho NT, Kroner B, Grinspan Z, Fureman B, Farrell K, Zhang J, Buelow J, Hesdorffer DC; Rare Epilepsy Network Steering Committee. Comorbidities of Rare Epilepsies: Results from the Rare Epilepsy Network...J Pediatr. 2018 Dec;203:249-258.e5.