

The clinical value of amplitude-integrated EEG for neonatal seizures:

comparison of short-term (6-12 hours) and long-term (24-48 hours) monitoring

Hasan Tekgul¹, Mehmet Yalaz², Ayfer Arduç Akcay³, <mark>Seda Kanmaz¹,</mark> Demet Terek², Ozge A. Koroglu², Sanem Yilmaz¹, Gul Aktan¹, Mete Akisu², Nilgun Kultursay²

¹Department of Pediatrics, Division of Child Neurology, Ege University Medical Faculty, Turkey; ²Department of Pediatrics, Division of Neonatology, Ege University Medical Faculty, Turkey;

¹Department of Pediatrics, Division of Child Neurology, Koc University Medical Faculty, Turkey

INTRODUCTON

Amplitude-integrated electroencephalography (aEEG) monitoring:

- has a critical importance for the definition of neoanatal seizures (electro-clinic / electro-graphic)
- is not as sensitive or specific as routine conventional EEG (rc-EEG) monitoring for the detection of neonatal seizures

Prolonged aEEG monitoring is suggested to increase the diagnostic yield of this modality

OBJECTIVES

• To investigate the predictive value of aEEG monitoring time for seizure detection in neonates with encephalopathy

MATERIAL & METHODS

- 88 neonates (preterm: 42, term: 46) with neonatal encephalopathy (NE)
- EEG monitoring:
 - aEEG monitoring was performed within the first
 24 hours of NE
 - aEEG and a one-hour rc-EEG recording were performed simultaneously
- Based on the monitoring duration:
 - o Group I (n=36): short-term monitoring (6-12 hours)
 - o Group 2 (n=52): long-term monitoring (24-48 hours)

RESULTS

- Seizure detection rate for aEEG monitoring in whole cohort was 36.3% (32/88)
- Abnormal background patterns were identified in 27 of 36 (75%) NE in group I and 36 of 52 (69%) NE in group II
- A reduced aEEG score was found in neonates with seizures compared to neonates without seizures during long-term EEG monitoring 4.26 ± 3.17 versus 6.29 ± 2.6 , respectively (p=0.015)

Table I. Comparison of the groups that performed longterm and short-term aEEG monitoring (n=88)

	n (%)	Group I (Short-term monitoring, 6-12 hours) 36 (41%)	Group II (Long-term monitoring, 24-48 hours) n:52 (59%)	p
Type of delivery	Spontaneous Cesarian delivery	8 (22.2) 28 (77.8)	10 (19.2) 42 (80.8)	0.046
Gestational age	Preterm Term	17 (47.2) 19 (52.8)	25 (48) 27 (52)	0.555
MRI findings	Normal IVH grades 1-2 Parenchymal damage, brain malformation	9 (25) 13 (36.1) 14 (38.8)	27 (51.9) 6 (11.5) 19 (36.5)	0.008
Clinical seizure	e Present Absent	26 (72.2) 10 (27.8)	31 (59.6) 21 (40.4)	0.224
Volpe's seizure classification	Subtle Tonic Myoclonic Clonic	8 (26.6) 5 (18.5) 5 (18.5) 9 (33.5)	6 (19.4) 6 (19.4) 1 (3.2) 18 (58.1)	0.122
aEEG seizure detection	Electro-clinical Electro-graphic Total	11(30.5) 6 (16.7) 17 (47.2)	11 (21.2) 4 (7.8) 15 (28.8)	0.078
EEG background grades	Grade 0-1 Grade 2-3	21 (80.7) 5 (19.3)	44 (84.6) 8 (15.4)	0.751
Mortality		9 (25)	7 (13.5)	0.168

Table IIa. The predictive values of aEEG monitoring for neonatal seizure detection

Group I (Short-term monitoring, 6-12 hours) n (%)				
		Seizure +	Seizure -	Total
Clinic	Seizure +	11 (electro-clinic)	15	26 (72.2)
	Seizure -	6 (electro-graphic)	4	10 (28.8)
	Total	17 (47.2)	19 (52.8)	36
Group II (Long-term monitoring, 24-48 hours) n (%)				
		Seizure +	Seizure -	Total
Clinic	Seizure +	11 (electro-clinic)	20	31 (59)
	Seizure -	4 (electro-graphic)	17	21 (40.3)
	Total	15 (28.8)	37 (71.2)	52

- The magnitude of brain injury with MRI is correlated with aEEG background scoring (p=0.031, r:-0.230)
- The aEEG background score of neonates who died in the NICU was 3±1.8, while those who survived were 5.3±3.3 (p=0.004)
- There was consistency between aEEG and the rc-EEG with respect to background characteristics in both cohorts (r=-0.452)

Table III. EEG findings according to presence of clinical seizure

		Clinical seizure +	Clinical seizure -	p
Duration of aEEG monitorization,n(%)	Short-term Long- term	26 (45.6) 31 (54.4)	10 (32.3) 21 (67.7)	0.224
aEEG seizure capture,	n (%)	22 (38.6)	10 (32.8)	0.555
aEEG score, mean±SD	Preterm Term Total	3.71 ± 2.4 5.3 ± 3.4 4.47 ± 3.03	3.3 ± 2.2 6.9 ± 3.3 5.6 ± 3.4	0.667 0.131 0.108
EEG background grades, n (%)	Grade 0-1 Grade 2-3	21 (80.7) 5 (19.3)	44 (84.6) 8 (15.4)	0.751

Table IIb. The predictive values of aEEG monitoring for neonatal seizure detection

	Group I (Short-term	Group II (Long-term	
	monitoring, 6-12 hours)	monitoring, 24-48 hours)	
Sensitivity %	64.7 (38.3-85.7)	73.3 (44.9-99.2)	
Specificity %	21.05 (6.05-45.57)	45.9 (29.49-63.08)	
PPV %	42.31 (32.50-52.77)	35.48 (26.4-45.7)	
NPV %	40 (18.4-66.31)	80.9 (63.1-91.3)	
Accuracy rate	41.67 (25.51-59.24)	53.8 (39.4-67.7)	

CONCLUSIONS

- The long-term aEEG monitoring of up to 48 hours in preterm and term neonates improves the diagnostic yield of aEEG for seizure detection
- aEEG background scoring is a valuable parameter for adverse outcomes in NICU

REFERENCES

- 1. Rakshasbhuvankar A, Paul S, Nagarajan L, Ghosh S, Rao S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure. 2015 Dec;33:90-8. doi: 10.1016/j.seizure.2015.09.014.
- 2. Pisani F, Pavlidis E. The role of electroencephalogram in neonatal seizure detection. Expert Rev Neurother. 2018 Feb;18(2):95-100.
- 3. Hüning B, Storbeck T, Bruns N, Dransfeld F, Hobrecht J, Karpienski J, Sirin S, Schweiger B, Weiss C, Felderhoff-Müser U, Müller H. Relationship between brain function (aEEG) and brain structure (MRI) and their predictive value for neurodevelopmental outcome of preterm infants. Eur J Pediatr. 2018 Aug;177(8):1181-1189.

CONTACT INFORMATION

hasan.tekgul@ege.edu.tr 00 90 232 390 12 55