

A Dynamic Genetic Testing Approach for Neurological Disorders in Pediatric Neurogenetic Case-Management Councils

Cemile Busra Olculu¹, Durdugul Ayyildiz Emecen², Enise Avci Durmusalioglu², Seda Kanmaz¹, Esra Isik², Tahir Atik², Erdem Simsek¹, Hepsen Mine Serin¹, Sanem Yilmaz¹, Gul Aktan¹, Sarenur Gokben¹, Ozgur Cogulu², Ferda Ozkinay², Hasan Tekgul¹ ¹Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Turkey ²Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey

INTRODUCTON

- \succ Genetic diagnosis is essential for;
 - Management of neurogenetic diseases
 - \triangleright Determining treatment options as well as precision therapy
- \succ However there certain important clinical challenges ;
 - ✤ Which genetic test should be chosen to reach the earliest and most accurate diagnosis?
 - Correct interpretation of appropriate tests-enhances early definitive diagnosis
 - Multidisciplinary collaborative approach ensures more accurate interpretation of findings and results

- (Table 1)
 - ✤ 17 -- with NGS
 - ✤ 3 -- with CMA (microarray)
 - \bigstar 1 -- with MLPA
- of sequencing data

OBJECTIVE

> To evaluate the diagnostic yield of genetic tests with a dynamic approachment in a neuro-genetics council

MATERIAL & METHOD

 \blacktriangleright A case series including 61 patients with clinical diagnosis of a neurological disorder

> The Pediatric Neurogenetic Case-Management Councils at Ege University Children's Hospital

> Which genetic test should be used to reveal a genetic molecular diagnosis; karyotyping, microarray, gene panels, clinical exome, and whole exome sequencing

RESULTS

Twenty- one patients (34.4%) had a genetic molecular diagnosis using dynamic testing approach

> Thirty-seven patients (60.6%) -- still under evaluation for additional genetic testing or reanalysis

> 3 patients (5%) – no specific molecular diagnosis with studied genetic tests

Table 1: Genetic landscape of the cohort

Patient no	Clinical Diagnosis	Gene	Mutatior
P-15	Epilepsy	SCN1A	c. 206C>1
P-24	Epilepsy	SCN1A	c.5740C>
P-40	Epilepsy	SCN1A	c.827A>C
P-61	Epilepsy	SCN1A	c.4903T>
P-57	Epilepsy	PRUNE1	c.[874_87
P-43	Epilepsy	NARS2	c.[418C>
P-6	Epilepsy	PIGN	c.[1034C
P-4	Epilepsy	IQSEC2	c.1591C>
P-19	Epilepsy	DPAGT	c.[341C>0
P-31	Muscular dystrophy	COL6A2	c.[1856_2
P-25	Muscular dystrophy	DMD	c.186+1G
P-27	Congenital myasthenia	CHRNA1	c.[1072C
P-5	Spinocerebellar ataxia	SACS	c.[2686-26
P-57	Developmental delay, Polyneuropath	PIEZ02	c.[744del
P-3	Developmental delay, Polyneuropath	PRPS1	c.25G>T
P-39	Ophtalmoplegi	MGME1	c.[563del
P-1	Hypotonia, kyphosis, ventriculomega		46,XY,t(13 (70,478,0
P-10	Epilepsy, mental retardation, autism		18q21.2c
P-23	Epilepsy, global developmental delay, hypotonia		15q11.2c
P-59	Muscular dystrophy	DMD	Exon 45-4

CONCLUSIONS

- \succ The dynamic genetic testing approach for neurological disorders provided;
 - earlier determination of the treatable causes
 - more specific molecular diagnosis, leading to precision medicine

REFERENCES

- 1. Sun H, Shen XR, Fang ZB, et al. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel, Switzerland). 2021;11(4). doi:10.3390/LIFE11040361
- 2. Issa MY, Chechlacz Z, Stanley V, et al. Molecular diagnosis in recessive pediatric neurogenetic disease can help reduce disease recurrence in families. BMC Med Genomics. 2020;13(1):1-10. doi:10.1186/S12920-020-0714-1/FIGURES/3
- 3. Córdoba M, Rodriguez-Quiroga SA, Vega PA, et al. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach. PLoS One. 2018;13(2). doi:10.1371/JOURNAL.PONE.0191228
- 4. Al-Shamsi A, Hertecant JL, Souid AK, Al-Jasmi FA. Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates. Orphanet J Rare Dis. 2016;11(1). doi:10.1186/s13023-016-0474-3

CONTACT INFORMATION

busra.olculu@ege.edu.tr +90 (232) 390 12 55

- 75insA; 874_875insA] •T ; c.1253G>A] >T; c.2575delA] •G ; 341C>G]
- 1858delTCA ; 1856_1858delTCA]
- G>T
- C>T; 1072C>T]
- 690del ; 2686-2690del]
- elT ; 744delT]
- elC;563delC]
- .3;12)(p21q13);arr.chr12q15q21.33 077-92,171,460)*1
- q23 (51,544,371-78,014,123)*1
- q13.2 (22,770,421-30,366,247)*1

48 del

