

Comorbidities in children with cerebral palsy: A cross-sectional study Ruchika Jha, Maya Vishwanath, Ankita Dilip Gambhirao, Arjun Kurup, Sachendra Badal*, Sarvesh Kohli, Parvathi, BM John, KM Adhikari, Vishal Sondhi

Department of Pediatrics, Armed Forces Medical College and Command Hospital (SC), Pune, India

INTRODUCTION

- ✓ Disabilities in cerebral palsy (CP) include not only the motor dysfunction and the associated limitations, but also functional multiple additional disorders of cerebral functioning. These comorbidities reflect the brain injury, which may vary based on the underlying etiology and brain development.
- \checkmark In contrast to developed nations, the etiological spectrum of CP in low-middle-income-countries (LMIC) is dominated by well-characterized and factors like hypoxia-ischemia, modifiable infections, hypoglycemia prenatal and hyperbilirubinemia.
- \checkmark Hence, the nature of CP subtype, the comorbidities associated with them and the associated functional limitations are likely to be different in children with CP in LMICs as compared to the high-income countries.

Objectives

- \checkmark To describe the comorbidities in children with CP.
- \checkmark To determine the CP characteristics associated with different comorbidities.

Sample size and Statistics

- \checkmark Prevalence of the co-morbidities associated with CP varies from 20% to 75%
- \checkmark Considering a 95% confidence level and 5% confidence limits and 50% prevalence of comorbidity, the sample size was calculated as 384
- Prevalence of comorbidities associated with CP was determined as proportion
- ✓ Risk of comorbidities with different subtypes of CP different GMFCS level was analyzed by logistic regression

- 2018 to Oct 2021.
- infant brain.
- Exclusion: disabilities, due to
- ✓ Comorbidity evaluation:

 - (VEP)
 - (BERA)
 - \checkmark Communication:

 - (NCCPC)

Materials & Methods

✓ This cross-sectional observational study was undertaken in the Pediatric department of a tertiary care referral hospital, between April

 \checkmark CP was defined as a group of disorders causing permanent impairment of voluntary movement or posture attributed to non-progressive disturbances occurring in the developing fetal or

Inclusion: Children aged 2 to 18 years with a confirmed diagnosis of CP were eligible

Children with transient motor disabilities motor due to meningomyelocele or other spinal cord lesions, isolated hypotonia, motor abnormalities solely deficiency, mental and neurodegenerative disorders were excluded.

✓ All children underwent review of their medical records and a detailed neurological evaluation. The child was thus, subclassified into hemiparetic CP, spastic diplegia, dyskinetic CP, spastic quadriparesis and mixed CP.

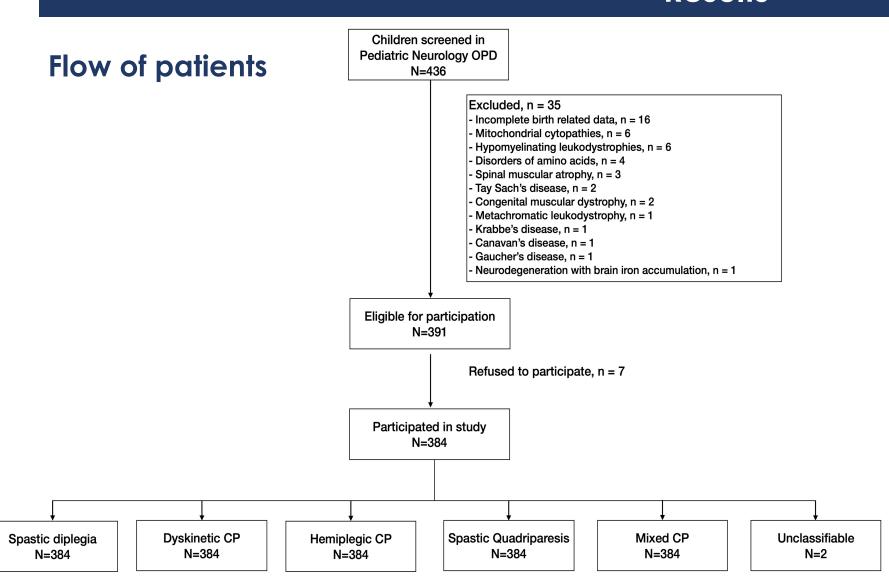
✓ *Functional:* GMFCS scale

✓ *Visual*: Clinical evaluation and visual evoked potential

✓ *Hearing*: Brainstem Evoked Response Audiometry

✓ *Cognitive*: Vineland Social Maturity Scale (VSMS)

MacArthur Communicative **Development Inventory**


✓ *Behavior*: Childhood Behavior Check List (CBCL)

 \checkmark Epilepsy: Clinical evaluation ± EEG

✓ *Sleep*: Children's Sleep Habits Questionnaire (CHSQ)

✓ *Pain*: Non-communicating children's pain checklist


 \checkmark Gastrointestinal dysfunction: Evaluation of biting, chewing, vomiting, constipation and sialorrhea

Table 1. Baseline data

		A								
Characteristic	Overall	Dyskinetic	Hemiparetic	Mixed CP	Spastic Diplegia	Spastic Quadriplegia				
Age, months	78 (38)	93 (42)	72 (41)	82 (37)	66 (27)	77 (41)				
Male	251 (65%)	50 (86%)	36 (69%)	77 (70%)	30 (43%)	56 (61%)				
Gestational age										
Mean (SD)	37(4)	38(3)	37(4)	38(2)	33(3)	38(3)				
Term	231(60%)	43(74%)	32(62%)	81(74%)	7(10%)	66(72%)				
Moderate to late preterm	97 (25%)	13 (22%)	11 (21%)	25 (23%)	29 (41%)	19 (21%)				
Very preterm	48 (13%)	1 (1.7%)	7 (13%)	4 (3.6%)	31 (44%)	5 (5.4%)				
Extremely preterm	8 (2.1%)	1 (1.7%)	2 (3.8%)	0 (0%)	3 (4.3%)	2 (2.2%)				
Mode of delivery										
Vaginal	241 (63%)	36 (62%)	39 (75%)	58 (53%)	49 (70%)	58 (63%)				
LSCS	130 (34%)	21 (36%)	13 (25%)	46 (42%)	21 (30%)	28 (30%)				
Instrumental	13 (3.4%)	1 (1.7%)	0 (0%)	6 (5.5%)	0 (0%)	6 (6.5%)				
Birth Weight, grams	2,343 (796)	2,715 (709)	2 <i>,</i> 300 (880)	2,563 (582)	1,451 (439)	2,548 (752)				
Etiology/ Risk Factors										
Antenatal factors	32	0	10	9	4	7				
Genetic	23 (6.0%)	0 (0%)	10 (19%)	3 (2.7%)	1 (1.4%)	7 (7.6%)				
Intrauterine infections	9 (2.3%)	0 (0%)	0 (0%)	6 (5.5%)	3 (4.3%)	0 (0%)				
Birth related factors	320	58	40	82	66	74				
Hypoglycemia	102 (26.6%)	0 (0%)	0 (0%)	61 (55%)	0 (0%)	41 (45%)				
Perinatal asphyxia	90 (23.4%)	35 (60%)	7 (13%)	14 (13%)	7 (10%)	27 (29%)				
Prematurity	81 (21.1%)	2 (3.4%)	11 (21%)	3 (2.7%)	59 (84%)	6 (6.5%)				
Neonatal sepsis	74 (19.3%)	7	0	35	10	22				
Neonatal jaundice	24 (6.3%)	21 (36%)	0 (0%)	3 (2.7%)	0 (0%)	0 (0%)				
Perinatal stroke	23 (6.0%)	0 (0%)	22 (42%)	1 (0.9%)	0 (0%)	0 (0%)				
Birth trauma	17 (4.4%)	4 (6.9%)	1 (1.9%)	2 (1.8%)	1 (1.4%)	9 (9.8%)				
Etiological factors after neonatal period	26	0	0	17	0	9				
Febrile encephalopathy	13 (3.9%)	0 (0%)	0 (0%)	10 (9.1%)	0 (0%)	3 (5.4%)				
Surgery related hypoxia	11 (2.9%)	0 (0%)	0 (0%)	7 (6.4%)	0 (0%)	4 (4.3%)				
Traumatic brain injury/ drowning	2	0	0	0	0	2				
Unknown	6 (1.6%)	0 (0%)	2 (3.8%)	2 (1.8%)	0 (0%)	2 (2.2%)				

E-poster 746: *Presenting Author: Dr Sachendra Badal, DM, MD, DNB, Department of Pediatrics, Command Hospital (SC), Pune, India

Results

			uniong c		
Characteristic	Dyskinetic N = 58	Hemiparetic N = 52	Mixed N = 110	Diplegia N = 70	Qua N
GMFCS 1	0 (0%)	27 (52%)	0 (0%)	3 (4.3%)	C
GMFCS 2	2 (3.4%)	18 (35%)	2 (1.8%)	35 (50%)	2
GMFCS 3	11 (19%)	2 (3.8%)	9 (8.2%)	29 (41%)	5
GMFCS 4	19 (33%)	5 (9.6%)	24 (22%)	3 (4.3%)	13
GMFCS 5	26 (45%)	0 (0%)	75 (68%)	0 (0%)	72
Visual Impairment	50 (86%)	49 (94%)	99 (90%)	68 (99%)	89
Abnormal BERA	36 (62%)	2 (3.8%)	35 (32%)	14 (20%)	25
Others					
Severe GI Dysfunction	20 (34%)	1 (1.9%)	37 (34%)	0 (0%)	31
Significant pain	37 (64%)	9 (17%)	88 (80%)	22 (31%)	72
Social Quotient, Mean (SD)	20 (21)	71 (22)	15 (14)	59 (24)	1
Epilepsy	27 (47%)	24 (46%)	88 (80%)	24 (34%)	81
Sleep impairment	38 (66%)	8 (15%)	70 (64%)	6 (8.6%)	54
Behavioral abnormalities	29 (50%)	17 (33%)	57 (52%)	21 (30%)	39

CONCLUSIONS

- ✓ Unlike the developed countries, a large proportion of children with CP in LMIC are of severe type with GMFCS 4 or 5
- Hypoglycemia and hyperbilirubinemia collectively accounted for 1 in 3 children with CP. Both these factors are potentially preventable
- \checkmark Type of CP (Dyskinetic, mixed or spastic quadriplegia) is associated with increased odds of comorbidities than with hemiparetic or diplegic CP
- ✓ The risk of comorbidities increases with increasing GMFCS from 1 to 5
- \checkmark These are significant for developing policies and community participation programmes for these children

Table 2. Prevalence of comorbidities among children with CP

