Intracranial cysts in pediatric age group: Incidental or developmental?

Burcin Sanlidag¹, Mehmet Alp Dirik², Eray Dirik³

¹Assoc Prof Dr, Pediatric Neurology, Near East University, Faculty of Medicine, Nicosia, Cyprus, ²Assoc Prof Dr, Radiology, Dr Suat Gunsel University, Faculty of Mdicine, Kyrenia, Cyprus, ³Prof Dr, Pediatric Neurology, Near East University, Faculty of Medicine, Nicosia, Cyprus

Introduction

Intracranial cysts are fluid-filled sacs within the brain. There is a diversity of intracranial cysts with different incidences within the childhood period. In addition there is a growing awareness about co-morbidities and the consequences of intracranial cysts.

Although it has been reported that they are mostly benign and asymptomatic, intracranial cysts can cause headache, epileptic seizures, increased intracranial pressure, hydrocephalus, ophthalmological symptoms, sensorineural hearing loss and neuropsychiatric problems. The size and the localisation of the cysts may have effect on symptomatology.

The leading type of intracranial cyst among childhood period is arachnoid cysts. The incidence of arachnoid cysts rises in cases with Down syndrome, schizencephaly, mucopolysaccharidosis and neurofibromatosis demonstrating an increased prevalence with underlying abnormalities of the brain.

It has been postulated that some of the cysts might be caused by a pathological process during developmental stages. That may be the reason of high rates of co-morbid conditions.

Objectives

The present study aimed to evaluate cystic findings in children who were admitted to the department of pediatric neurology regardless of the symptomatology. The type, localization, and accompanying clinical findings had been aimed to be documented.

Material and Methods

The study designed as a retrospective study. Children who were admitted to the Clinic of Pediatric Neurology and who had an MRI between years of 2016- 2021 enrolled in the study. Ethical approval had been taken from NEU Ethical Committee. The MRI scans evaluated by the same radiologist and primary intracranial cysts had been enrolled in the study. Demographic and clinical findings had been evaluated from the hospital's database and patients' files. Statistical Package for Social Sciences (version 17.0; IBM Armonk, NY) was used for statistical analysis.

Table 1. Some socioeconomic and clinical characteristics of participants

Characteristics	n	
Sex		
Male	36	46
Female	42	53
Complaint		
Seizure	37	47
Headache	17	21
Developmental delay	12	15
Other*	12	15
Primary diagnosis		
Epilepsy	33	42
Headache syndrome	16	20
Developmental delay	13	16
Other**	16	20
Presence of more than one diagnosis	49	62
Seizure at least one	42	53
Mental retardation		
Present	20	25
Not present	54	69
Not documented	4	5
Motor retardation		
Present	22	28
Not present	53	67
Not documented	3	3
Neuropsychiatric diagnosis		
Present ***	9	11
Not present	60	76
Not documented	9	11

^{*}vertigo, tinnitius, trauma, sacral dimple, syncopy, loss of consiousness, numbness.

Results

Findings	n	%
Site of cyst		
Midline	32	41.0
Left	19	24.4
Right	17	21.8
Bilateral	10	12.8
Localization		
Midline	32	41.0
Temporal	23	29.5
Multifocal	6	7.7
Frontal	5	6,4
Occipital	5	6.4
Parietal	3	3.8
Cerebellar	3	3.8
Parahippocampal	1	1.3
Size of cyst		
<10mm	29	37.2
≥10mm	49	68.8
According to axial structures		
Intraaxial	22	28.2
Extra axial	56	71.8
According to tentorium cerebri		
Infratentorial	17	21.8
Supratentorial	61	78.2

Localization	Sex (male/female)	Seizure (+/-)	Epilepsy (+/-)	Mental retardation (+/-)	Motor retardation (+/-)	Neuropsychiatric findings (+/-)	Size of the cyst (<10mm/≥10mm)
Temporal/ Extratemporal	14/9 22/33 P=0.092	15/8 25/30 P=0.192	12/11 25/30 P=0.588	4/18 16/36 P=0.265	4/18 18/35 P=0.172	5/15 4/45 P=0.060	11/12 18/37 P=0.208
Midline/ Extramidline	10/21 26/21 P=0.046*	14/17 28/19 P=0.211	12/19 25/22 P=0.210	9/21 11/33 P=0.634	8/22 14/31 P=0.679	3/24 6/36 P=0.702	11/20 18/29 P=0.801
Intra-axial/ Extraaxial	8/14 28/28 P=0.277	20/2 22/34 P=0.000*	17/5 20/36 P=0.001*	5/15 15/39 P=0.811	7/13 15/40 P=0.516	4/14 5/46 P=0.179	11/11 18/38 P=0.142
Supratentorial/ Infratentorial	30/31 6/11 P=0.310	38/23 4/13 P=0.005*	33/28 4/13 P=0.026*	18/41 2/14 P=0.139	20/39 2/14 P=0.095	7/47 2/13 P=0.970	25/36 4/13 P=0.188

Table 2. Findings on MRI

Cyst			
dline	32	41.0	
t	19	24.4	The prevalence of seizure, epilepsy, mental retardation, and the presence of
nt	17	21.8	neuropsychiatric status were high in patients with intracranial cysts.
teral	10	12.8	There must be an awareness of increased co-morbidities in children with
zation			
line	32	41.0	intracranial cysts. Especially for the early evaluation and management of
poral	23	29.5	developmental delay and neuropsychiatric problems.
tifocal	6	7.7	
ntal	5	6,4	In addition there may be need of neurosurgical attemptions either at the
pital	5	6.4	time of diagnosis or in the follow up.
etal	3	3.8	·
pellar	3	3.8	Further studies are required in this field.

References

Conclusions

Osborn AG, Preece MT. Intracranial cysts: radiologic-pathologic correlation and imaging approach. Radiology. 2006; 239(3):650-664. doi: 10.1148/radiol.2393050823

Maher CO, Piatt JH Jr; Section on Neurologic Surgery, American Academy of Pediatrics. Incidental findings on brain and spine imaging in children. Pediatrics. 2015 Apr;135(4):e1084-96. doi: 10.1542/peds.2015-0071.

Al-Holou WN, Yew AY, Boomsaad ZE, Garton HJK, Muraszko KM, Maher CO. Prevalence and natural history of arachnoid cysts in children. J Neurosurg Pediatr. 2010 Jun;5(6):578-85. doi: 10.3171/2010.2.PEDS09464

Jafrani R, Raskin JS, Kaufman A, Lam S. Intracranial arachnoid cysts: Pediatric neurosurgery update. Surg Neurol Int. 2019;10:15. Published 2019 Feb 6. doi:10.4103/sni.sni_320_18

Sandvik U, Adolfsson T, Jacobson DN, Tedroff K. Cognition in Children with Arachnoid Cysts. J Clin Med. 2020 Mar 20;9(3):850. doi: 10.3390/jcm9030850.

Contact

burcinsanlidag@yahoo.com mehdirik@gmail.com eraymehdirik@gmail.com

Among 78 patients 36(46,2%) were male and 42(53,8%) were female. The mean age was 7±5,4 years. The most frequent complaint of attendance was a seizure (47,4%). Approximately one over four had mental and/or motor retardation. Nine (11,5%) of them had a neuropsychiatric diagnosis.

Most of the cysts were located at the midline (41%). Mostly located extra-axial (71,8%) and supratentorial (78,2%). Most frequently arachnoid cysts had been observed with a percent of 64.1. The second leading type was pineal cysts(15.4%). The rest were porencephalic cyst, neuroglial cysts, and others (subependymal cyst and choroidal fissure cyst) with a percent of 10.3 (8 cases), 7,7 (6 cases), and 2,6 (2 cases) respectively.

The majority of the cysts were ≥10mm. They were mostly located at the midline (41%). Among lobes of the brain, they were mostly located within the temporal lobe (29,5%). Among 78 patients one of them with arachnoid cyst required emergent neurosurgical attemption due to increased intracranial pressure presented with seizure and papilledema.

The history of seizure, epilepsy, presence of mental retardation, and neuropsychiatric problems was evaluated according to the population ratios based on z approximation in which signififantly higher rates had been observed among cases with intracranial cysts (p:0,00*).

^{**} healthy, PHACE syndrome

^{***} ADHD (7 patients), behavioural problems (2 patients)