

ACUTE DISSEMINATED ENCEPHALOMYELITIS (ADEM) IN CHILDREN: A MULTICENTER RETROSPECTIVE STUDY

Hakan Gümüş⁴, Şeyda Besen⁵, Gökçen Öz Tuncer³, Pınar Gençpınar², Hasan Tekgül¹, Banu Anlar⁶, Turkish Acute Disseminated Encephalomyelitis Study Group. sity Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Adana, Turkey, ⁹ Karadeniz Technical University Faculty of Medicine, Department of Pediatrics. Division of Pediatric Neurology. Trabzon. Turkey¹⁰ University of Health Sciences Turkey. Izmir Faculty of Medicine, Department of Pediatrics. Division of Pediatric Neurology. Trabzon. Turkey¹⁰ University of Health Sciences Turkey. Izmir Faculty of Medicine, Department of Pediatrics. Division of Pediatric Neurology. atrics. Division of Pediatric Neurology, Izmir, Turkey, 11 Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Izmir, Turke

Seda Kanmaz¹, Sanem Yılmaz¹, Nihal Olgaç Dündar², Ayşe Aksoy³, Mehmet Canpolat⁴, İlknur Erol⁵, İbrahim Öncel⁶, Günce Başarır⁷, Gülen Gül Mert⁸, Sevim Şahin⁹, Serdar Pekuz¹⁰, Çağatay Günay¹¹, Hüseyin Per⁴, Yasemin Özkale⁵, Dilara Ece Toprak¹ ¹Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatrics, Division of Pediatric Neurology, İzmir, Turkey, ³ Ondokuz Mayıs University Faculty of Medicine, Department of Pediatrics, Division Division of Pediatric Neurology, Kayseri, Turkey, ⁵ Baskent University Faculty of Medicine, Department of Pediatrics, Division of Pediatrics, Divisi

INTRODUCTION

The clinical landscape of acute disseminated encephalomyelitis (ADEM) has been better recognized due to recent advances in the field, particularly the identification of myelin oligodendrocyte glycoprotein (MOG) antibodies.

OBJECTIVES

- To evaluate demographic, clinical, laboratory data and outcome characteristics in a large cohort
- To investigate the role of anti-MOG antibodies in clinical findings and outcome

MATERIALS AND METHODS

- ADEM patients (n=245) from 24 centers followed up between 2010 and 2022 were evaluated.
- The outcome of 172 patients followed-up \geq 1 years.
- **Incomplete recovery** was considered as having:
 - a modified Rankin Score (mRS)≥1
 - with/or **epilepsy** at the end of 1-year follow-up.

Table 1: Final diagnoses of the relapsing ADEM patients according to anti-MOG status

	Serum anti-MOG antibody						
Final Diagnosis	Positive (n)	Negative (n)	Unavailable(n)				
Multiphasic ADEM (n=9)	3	2	4				
Multiple sclerosis* (n=8)	0	6	2				
ADEM-ON (n=3)	1	0	2				
Unclassified (n=3)	3	_	-				

*Recieved the diagnosis of MS within 10-60 months

Clinical Landscape:

Relapsing ADEM (Table 1)

- Serum anti-MOG IgG tested in 89 patients by cell-based assay immunofluorescence were positive in 31.5%.
- Children with MOG antibodies:

 - involvements on MRI
 - had higher white blood cell counts had a higher rate of basal ganglia
- Anti-MOG IgG positivity was not associated with the need for a intensive care unit, relapse, or recovery.

Outcome:

Incomplete recovery (Table 3)

associated with:

- Glasgow Coma Score <10 on admission</p> need for intensive care unit need for mechanical ventilation
- presence of seizures on admission
- The clinical landscape of ADEM was more accurately defined in the MOG antibody era.
- The relapse rate of 9,4% in this series supports the often monophasic nature of ADEM.
- The overall prognosis is good, regardless of the anti-MOG antibody status.
- The clinical severity on admission appeared to be the most important prognostic factor.

RESULTS

- ✤ 9.4% (23 patients) of the cohort (n=245) relapsed. **ADEM with MOG antibodies (Table 2)**
 - were younger

[Modified Rankin Score (mRS)≥1 (n=26), epilepsy (n=20), (p<0.05)] Among patients with at least one-year follow-up, 43/172 (%25) patients had incomplete recovery

CONCLUSIONS

Table 2: Clinical features and short term outcome of MOG IgG+ and **MOG IgG- ADEM patients**

		ADEM	ADEM	p value			Complete	Incomplete
		(MOG lgG+)	(MOG IgG –)	(<0.05)			recovery	recovery
		n=28 (31,5%)	n=61 (68,5%)				n (%), 129 (75)	n (%), 43 (2
			74124	0.000*	Age (mean ±SD)		6.5±3.8	6.4±3.7
Age (years) mean :	±SD	5.1±2./	7.1±3.4	0.006* Sex	Female	46 (35.7)	17 (39.5)	
Sex n (%)	Female	14(50)	2/(44.3)	0.652	n (%)	Male	83 (64.3)	26 (50.5)
White blood cells (/mm ³)		14(50) 15100+6116	12168+5830	0.05*	Precedent events	Immunization	3 (2.3)	1 (2.3)
Seizure	Yes	7 (25)	9 (15 5)	0.00	n (%)	Infection	98 (76)	38 (88.4)
Scizure	No	21 (75)	49(84.5)	0.304		ND	28 (21 7)	4 (9 3)
MRI Findings	White Matter	21 (77.8)	40 (74.1)	0.716*	White blood colls (/m	m^3) mean $+SD$	1220(21.7)	$\frac{12480+563}{12480+563}$
	Corpus callosum	1 (3.7)	5 (9.3)	0.658*	CSE protoin	Normal	91 (76 <i>J</i>)	12480 ± 3036 25(67.6)
	Basal Ganglia	13 (48.1)	14 (25.9)	0.046*	CSF protein	Norman	OI(70.4)	23(07.0)
	Thalamus	8 (29.6)	26 (48.1)	0.111*		High Newsel	25 (23.0)	12 (32.4.)
	Brain Stem	16 (59.3)	32 (59.8)	0.899*	CSF/blood lgG index	Normal	31 (62)	9 (75)
	Cerebellum	12 (44.4)	19 (35.2)	0.419*		High	19 (38)	3(25)
	Spinal Cord	12 (44.4)	14 (26.4)	0.104*	Seizure at onset	Yes	27 (21.4)	21 (48.8)
	Periventricular	8 (29.6)	12 (22.2)	0.466*		No	99 (78.6)	22 (51.2)
	Optic nerve	1 (3.7)	9 (16.7)	0.95*	Glasgow Coma Scale	<6	6 (4.7)	6 (14)
	Contrast enhancement	9 (32.1)	24 (39.3)	0.281*	on admission	6-10	14 (10.9)	14 (32.6)
Treatment	Steroid	26 (92.9)	60 (98.4)	0.182 ⁺	Treatment lag	>10	108 (83.7)	22 (51.2)
	IVIG	13 (46.4)	25 (41)	0.674 ⁺		1 dav	34 (27.2)	11 (25.6)
	Plasmapheresis	1(3.6)	5(8.2)	0.409*		2-7 day	68 (54 4)	30 (69 8)
Need for ICU	Yes	11 (39.3)	15 (25)	0.171 ⁺		\sim 7 day	22(18.1)	2(4,7)
-	No	17 (60.7)	45(75)		Treatment	>7 udy	23 (10.4)	2(4.7)
Duration of ICU (da	ays) mean ±SD	7 (7-76)	16 (9-32)	0.596*	Ireatment	Steroid	121 (95.8)	41 (95.5)
Need for MV	Yes	4 (14.3)	4 (6.6)	0.269*			49 (38)	20 (46.5)
	No	24 (85.7)	55 (93.4)	0.11.0+		Plasmapheresis	9(7)	9 (20.9)
mRS at 3 rd month	0	16 (88.9)	28 (68.3)	0.116'	0.116' Need for ICU	Yes	37 (29.4)	24 (55.8)
DC 14st	≥ 1	2(11.1)	13 (31.7)	0.707†		No	89 (70.6)	19 (44.2)
mRS at 1 st year		21 (91.3)	39 (86.7)	0.707 Duration of ICU (mean Need for MV	±SD)	10 (7-16)	17.5 (5-60)	
Delence			6 (13.3) 8 (12.1)		Yes	7 (5.5)	8 (19)	
Kelapse	Yes	/ (25) 21 (75)	$\delta(13.1)$	0.164	0.164	No	121 (94.5)	34 (81)
Enilopsy	NO	21(75)	25 (80.9) 9 (14 2)	0.010 [†]	Duration of MV media	n (min-max)	5.5 (1-10)	9.5 (4-20)
грисруу	No	10 (86 A)	0 (14.3)	0.910	mRS on admission	0	5 (4.1)	-
Recovery	Complete	20 (82)	39 (75)	0.627 [†]		≥1	118 (95.9)	38 (100)
necovel y	Incomplete	5 (18)	13 (25)	Relapse	Yes	12 (9.3)	6 (14)	
	meompiete		10 (20)		•			

*Student's t-test, ⁺McNemar's Chi Square/Fisher's exact test, p<0.05 significance level ND: not defined, CSF: Cerebrospinal fluid, ICU: Intensive care unit, IVIG: Intravenous immunoglobulin, MV: Mechanical ventilation, mRS: Modified Rankin Scale

REFERENCES

1-Tenembaum, S, et al. *Neurology* 68.16 suppl 2 (2007): S23-S36. 2- Krupp, LB., et al. *Multiple Sclerosis Journal* 19.10 (2013): 1261-1267. 3-Tenembaum, S et al. "Pediatric demyelinating disease and anti-MOG antibody." Clinical and Experimental Neuroimmunology 12.1 (2021): 7-21. 4- Konuskan, B et al. "Retrospective analysis of children with myelin oligodendrocyte glycoprotein antibody-related disorders." Multiple sclerosis and related disorders 26 (2018):1-7 5-Tenembaum, Chamoles, Fejerman. Neurology 59.8 (2002): 1224-1231. 6- Baumann, M., et al. Journal of Neurology, Neurosurgery & Psychiatry 86.3 (2015): 265-272

1-year outcome

*Student's t-test, [†]McNemar's Chi Square/Fisher's exact test, p<0.05 significance level ND: not defined, CSF: Cerebrospinal fluid, ICU: Intensive care unit, IVIG: Intravenous immunoglobulin, MV: Mechanical ventilation, mRS: Modified Rankin Scale

No

ND

Negative

Positive

Anti-MOG Ab status