CLINICAL UTILITY OF NEXT GENERATION SEQUENCING IN NEURODEVELOPMENTAL DISORDERS –

EXPERIENCE FRO A TERTIARY CARE CENTRE Karthika Ajit V, Ramsekhar Menon, Soumya Sundaram

Department of Neurology ,Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum

ICNC 2022 17th INTERNATIONAL CHILD NEUROLOGY CONGRESS

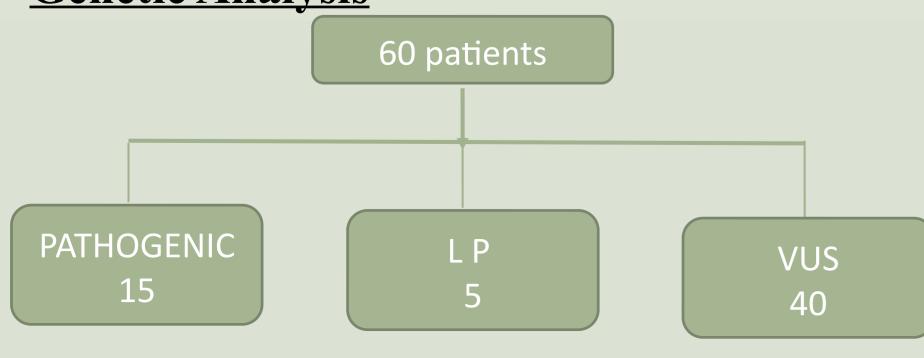
ANTALYA, TURKEY I OCTOBER 3-7, 2022

INTRODUCTION

- Neurodevelopmental disorders (NDDs) comprises phenotypically and genotypically heterogenous conditions with onset in the developmental period.
- The advent of next generation sequencing (NGS) techniques has unearthed the genetic landscape of these conditions.
- Hence, this study was planned to identify the clinical utility of NGS in NDDs.

OBJECTIVES

• To identify the diagnostic utility of NGS in neurodevelopmental disorders.


METHODOLOGY

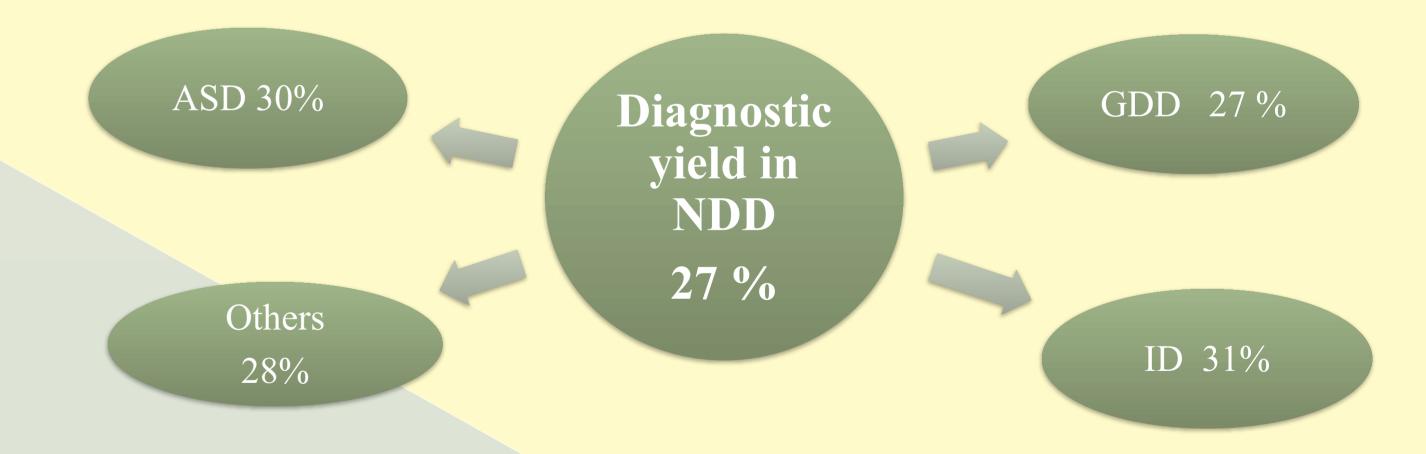
- Retrospective observational analysis (June 2017 to May 2021) of children satisfying the DSM V criteria for NDDs attending the Comprehensive Care Centre for Neurodevelopmental Disorders of our Institute on whom NGS was performed.
- Relevant clinical and genetic details of the patients were recorded. American College of Medical Genetics (ACMGE) criteria were used to classify the genetic variants into pathogenic, likely pathogenic(LP) and variants of unknown significance (VOUS).

RESULTS

- 75 patients were included in the study with median age of 4.2 years (8 months 16 years) of which 39 patients were males.
- In 15 patients ,NGS was negative

Genetic Analysis

Table 1: Pathogenic variants in NDD as per ACMG criteria


Patient (Age/Sex)	Gene	Variants	Variant type	Zygosity	OMIM Phenotype
P1(11/F)	SMC1A	c.547C>T	Nonsense	Ht	#301044
P2(5/F)	MECP2	c.1197_1222del insAGC	Indel	Ht	#312750
P3(2/F)	CDKL5	c.1842T>A	Nonsense	Но	#312750
P4(7/F)	MECP2	c.1233dup	Indel	Ht	#312750
P5(5/M)	OCRL	c.1880-2A>G	Splice site	Hi	#309000
P6(9/F)	SLC9A1	c.1147delC	Indel	Но	#616291
P7(7/F)	17p11.2 del		CNV	Ht	#182290
P8(16/M)	TTC8	c.515delT	Indel	Но	#615985
P9 (10m/F)	ELOVL4	c.452_455del	Indel	Но	#614457
P10(2/M)	GNB5	c.538A>T	Missense	Ht	#617182
P11(4/M)	DVL3	c.655C>T	Missense	Ht	#616894
P12(9/F)	OPA1	c.790-2A>C	Splice site	Но	#210000
P13(11m/F)	AHI1	c.1152-1G>C	Splice site	Но	#608629
P14(4/F)	MECP2	c.433C>T	Missense	Ht	#312750
P15(2/F)	SHANK3	c.3470_3479del	Indel	Ht	#606232

m - month ,CNV –Copy number variant ,Ht – Heterozygous , Hi- Hemizygous , Ho – Homozygous,M-Male , F - Female

Table2: Likely pathogenic variants as per ACMG criteria

,	Patient (Age/Sex)	Gene	Variants	Variant type	Zygosity	OMIM Phenotype
	P16(9/M)	SCN1A	c.5252C>T	Missense	Ht	#607208; #604403
	P17(6/F)	SPAST	c.1496G>A	Missense	Ht	#182601
	P189m/F)	GNAO1	c.626G>A	Missense	Ht	#617493
	P4(1/M)	ALDH3A2	c. (798+1_800_1_12 07+1_1396)del	CNV	Но	#270200
	P5(11/M)	NUS1	c.852T>A	Nonsense	Ht	#617831

Diagnostic Yield

CONCLUSION

The diagnostic yield from NGS among NDDs are high and should be considered during their clinical evaluation.

REFERENCES

1.Kim SH, Kim B, Lee JS, Kim HD.Proband-only clinical exome sequencing for neurodevelopmental disabilities. Pediatr Neurol. 2019 Oct;99:47-54

2.Hanly C, Shah H, Au PYB, Murias K. Description of neurodevelopmental phenotypes associated with 10 genetic neurodevelopmental disorders: A scoping review. Clin Genet. 2021 Mar;99(3):335-346.