The fate of spikes in self-limited epilepsy with centrotemporal spikes: Are clinical and baseline EEG features effective? Çağatay Günay¹, Gamze Sarıkaya Uzan¹, Özlem Özsoy¹, Semra Hız Kurul¹, Uluç Yiş¹ ¹: Department of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey

INTRODUCTION

Self-limited epilepsy with centrotemporal spikes (SLECTS) is the most common focal epilepsy of childhood. (1) The relationship between the anti-seizure medications (ASM) and decrease and/or normalization of spike waves has been investigated. However, as far as we know, there is no study to date evaluating the effects of baseline electroencephalography (EEG) features as well as clinical features and ASM on suppressing spike waves. (2-4) The purpose of this study is to explain in detail the change in centrotemporal spike waves between the first and last EEGs of SLECTS patients by examining the relationship to the clinical and baseline electroencephalographic findings.

Materials and Methods

This study was conducted on patients of both sexes, aged between 0-18 years with SLECTS with at least two years of follow-up with at least two sleep-deprived, minimum 20 minutes EEG recordings mentioned as first and last EEGs, who were attending pediatric neurology department between 2011-2021. The first and last EEGs of the patients were evaluated in terms of lateralization, localization, interhemispheric and interhemispheric generalization, and phase reversal. The spike wave index (SWI) was calculated as the sum of the spikes during 30 seconds of drowsiness and stage N2 sleep, whichever was more frequent, and analyzed in three groups as $\geq 50\%$, <50 and 0 (normal EEG). SWI change groups were composed by noting the SWI changes numerically and as percentages between the first and last EEG; a decrease of $\geq 50\%$ in SWI was classified as a good response, a decrease of <50% as a moderate response, and an increase or no decrease in SWI as no response. Effects of demographic and clinical features, as well as the first EEG parameters on the SWI change were examined.

Results

Of the 136 patients enrolled, 61.8% (n= 84) were male. The age of seizure onset ranged from 3.5 to 14 years (median= 7.5). Table 1 shows effects of demographic and clinical features on the SWI reduction. Table 2 shows Effects of the first EEG findings on SWI reduction.

ASM dura Persis General Focal clo Focal to n the fi First ho

Oxcarbaz

Carbama

Clinical re

Seizure

50% red

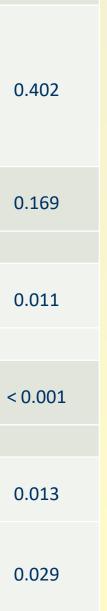
No chan

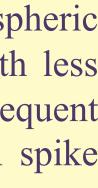
Table 1. Effects of demographic and clinical features on the SWI reduction.

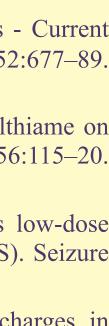
	Good response	Moderate response	No response				
	≥50% reduction in SWI (n= 26, 19.1%)	<50% reduction in SWI (n= 105, 77.2%)	An increase/no decrease in SWI (n= 5, 3.7%)	р			
al variables	Median (minimum-maximum)						
eizure onset (years)	7 (3.5-11)	8 (3.5-14)	7 (7-13)	0.060			
luration (minutes)	4 (1-10)	3 (1-15)	3 (1-10)	0.942			
ation (months)	24 (12-60)	24 (3-111)	12 (6-36)	0.057			
cal variables	Number (% within cohort, % within row)						
	10 (7.4%, 38.5%)	38 (28%, 36.2%)	4 (2.9%, 80%)	0.151			
uinity							
	3 (2.2%, 11.5%)	14 (10.3%, 13.3%)	0	1.000			
story of epilepsy							
	4 (2.9%, 15.4%)	30 (22.1%, 28.6%)	1 (0.7%, 20%)	0.380			
tant psychiatric disease							
	11 (8.1%, 42.3%)	42 (30.9%, 40%)	3 (2.2%, 60%)				
	15 (11%, 57.7%)	63 (46.3%, 60%)	2 (1.5%, 40%)	0.695			
	4 (2.9%, 15.4%)	13 (9.6%, 12.4%)	0				
fic learning disability	3 (2.2%, 11.5%)	12 (8.8%, 11.4%)	1 (0.7%, 20%)				
ty disorders	3 (2.2%, 11.5%)	10 (7.4%, 9.5%)	2 (1.5%, 40%)	0.677			
stent depressive disorder	1 (0.7%, 3.8%)	7 (5.1%, 6.7%)	0				
3y							
lized tonic-clonic	7 (5.1%, 26.9%)	17 (12.5%)	1 (0.7%, 20%)				
onic	8 (5.9%, 30.8%)	22 (16.2%)	2 (1.5%, 40%)				
onic	0	13 (9.6%)	1 (0.7%, 20%)				
wn-onset generalized tonic-	8 (5.9%, 30.8%)	27 (19.8%, 25.7%)	0	0.260			
	0	2 (1.5%, 1.9%)	0				
d rolandic findings	3 (2.2%, 11.5%)	24 (17.6%, 22.9%)	1 (0.7%, 20%)				
ship of seizures with sleep							
	4 (2.9%, 15.4%)	15 (11%, 14.3%)	0				
leep and awake	0	2 (1.5%, 1.9%)	0				
irst hour of sleep	16 (11.8%, 61.5%)	70 (51.5%, 66.7%)	4 (2.9%, 80%)	0.586			
our-the end of sleep	4 (2.9%, 15.4%)	15 (11%, 14.3%)	0				
ning	2 (1.5%, 7.7%)	3 (2.2%, 2.9%)	1 (0.7%, 20%)				
e	8 (5.9%, 30.8%)	46 (33.8%, 43.8%)	1 (0.7%, 20%)				
etam	8 (5.9%, 30.8%)	43 (31.6%, 41%)	3 (2.2%, 60%)	0 022*			
epine	7 (5.1%, 26.9%)	7 (5.1%, 6.7%)	0	0.033*			
zepine	3 (2.2%, 11.5%)	4 (2.9%, 3.8%)	1 (0.7%, 20%)				
esponse							
-free	24 (17.6%, 92.3%)	88 (64.7%, 83.8%)	0	< 0.001*			
duction in seizure frequency	1 (0.7%, 3.8%)	15 (11%, 14.3%)	3 (2.2%, 60%)				
nge in seizure frequency	1 (0.7%, 3.8%)	2 (1.5%, 1.9%)	2 (1.5%, 40%)				

Table 2. Effects of the EEG findings on SWI reduction

	Good response	Moderate response	No response	
	≥50% reduction in SWI	<50% reduction in SWI	An increase/no decrease in SWI	
	(n= 26, 19.1%)	(n= 105, 77.2%)	(n= 5 <i>,</i> 3.7%)	
Numerical variables	Median (minimum-maximum)			
SWI in the first EEG (%)	60 (50-89)	35 (7.67-69.3)	49 (8-71.7)	
Interval between first and last EEGs (months)	42 (12-74)	31 (12-108)	29 (12-44)	
Categorical variables	Number (% within cohort, % within row)			
Lateralization in the first EEG				
Unilateral right	13 (9.6%, 50%)	26 (19.1%, 24.8%)	2 (1.5%, 40%)	
Unilateral left	6 (4.4%, 23.1%)	31 (22.8%, 29.5%)	2 (1.5%, 40%)	
Bilateral but more prominent on right	2 (1.5%, 7.7%)	20 (14.7%, 19%)	0	
Bilateral but more prominent on left	3 (2.2%, 11.5%)	16 (11.8%, 15.2%)	1 (0.7%, 20%)	
Bilateral	2 (1.5%, 7.7%)	12 (8.8%, 11.4%)	0	
Unilateral (total)	19 (14%, 73.1%)	57 (42%, 54.3%)	4 (2.9%, 80%)	
Bilateral (total)	7 (5.1%, 26.9%)	48 (35.3%, 45.7%)	1 (0.7%, 20%)	
Intrahemispheric generalization in first EEG				
Yes	15 (11%, 57.7%)	30 (22%, 28.6%)	3 (2.2%, 60%)	
No	11 (8.1%, 42.3%)	75 (55.1%, 71.4%)	2 (1.5%, 40%)	
Interhemispheric generalization in first EEG				
Yes	13 (9.6%, 50%)	18 (13.2%, 17.1%)	3 (2.2%, 60%)	
No	13 (9.6%, 50%)	87 (64%, 82.9%)	2 (1.5%, 40%)	
Phase reversal				
Yes	4 (2.9%, 15.4%)	34 (25%, 32.4%)	4 (2.9%, 80%)	
No	22 (16.2%, 84.6%)	71 (52.2%, 67.6%)	1 (0.7%, 20%)	
C3	2 (1.5%, 7.7%)	14 (10.3%, 13.3%)	3 (2.2%, 60%)	
T4	0	11 (8.1%, 10.5%)	1 (0.7%, 20%)	
C4	2 (1.5%, 7.7%)	9 (6.6%, 8.6%)	0	


Conclusion


of phase reversal, intrahemispheric and interhemispheric Presence generalizations in the first EEG records in SLECTS were associated with less spike reduction. While electroencephalographic improvement was more frequent in patients with monotherapy, valproate was the most effective drug in spike reduction.


References

- Dryżałowski P, Jóźwiak S, Franckiewicz M, Strzelecka J. Benign epilepsy with centrotemporal spikes Current concepts of diagnosis and treatment. Neurol Neurochir Pol 2018;52:677–89. https://doi.org/10.1016/j.pjnns.2018.08.010.
- 2. Tacke M, Borggraefe I, Gerstl L, Heinen F, Vill K, Bonfert M, et al. Effects of Levetiracetam and Sulthiame on EEG in benign epilepsy with centrotemporal spikes: A randomized controlled trial. Seizure 2018;56:115-20. https://doi.org/10.1016/j.seizure.2018.01.015.
- 3. Xiao F, An D, Deng H, Chen S, Ren J, Zhou D. Evaluation of levetiracetam and valproic acid as low-dose monotherapies for children with typical benign childhood epilepsy with centrotemporal spikes (BECTS). Seizure 2014;23:756-61. https://doi.org/10.1016/j.seizure.2014.06.006.
- Kanemura H, Sano F, Ohyama T, Aihara M. Efficacy of levetiracetam for reducing rolandic discharges in comparison with carbamazepine and valproate sodium in rolandic epilepsy. Seizure 2018;62:79–83. https://doi.org/10.1016/j.seizure.2018.10.002.

Contact: cagataygunaymd@gmail.com

