KK Women's and Children's Hospital

SingHealth

Acute Necrotizing Encephalopathy (ANE) is a distinct clinicoradiological syndrome in Dengue virus encephalitis

1. Neurology, South Tees Foundation NHS Trust, United Kingdom; 2. Neurology Service, Dept of Paediatrics, KK Women's and Children's Hospital, Singapore

INTRODUCTION

- Reports of dengue virus encephalitis describe a febrile encephalopathy with bilateral haemorrhagic thalamic and brainstem involvement on neuroimaging, closely resembling the clinicoradiological syndrome of acute necrotizing encephalopathy (ANE). [1]
- The bilaminar haemorrhagic thalamic lesions have been variously termed a "double doughnut" sign or ring lesions. [1,2]
- Dengue virus infections are characterized by high fever with rash and lethargy, followed by a sudden deterioration with multiorgan involvement (often with encephalopathy) on days 4-5 of illness. This deterioration involves a cytokine storm. [1,3]
- ANE is characterized by a rapid deterioration with encephalopathy and multiorgan failure occurring early in a febrile viral illness (typically from respiratory viruses, e.g. influenza virus). ANE has a complex pathobiology and a cytokine storm is a key feature. [4,5]

METHODS

- Systematic review of paediatric and adult literature on dengue encephalitis was curated for clinical, laboratory, radiological and outcome data.
- ANE diagnostic criteria was applied: Acute febrile encephalopathy, characteristic neuroimaging, elevated cerebrospinal fluid protein, no evidence of an alternative diagnosis. [4]
- Dengue encephalitis diagnosis was based on established criteria. [6]
- "Classical" ANE neuroimaging were bilateral thalamus + pons/cerebellum involvement +/- cerebral white matter lesions, with haemorrhage. [5]
- *Forme fruste* patterns were deemed "ANE Compatible", but bilateral thalamic lesions were a mandatory requirement
- ANE severity scoring (ANE-ss) [7] was applied and compared against outcomes.

- abnormal motor signs (49%).

Figure 2: Outcomes in Dengue virus Clinicoradiological Encephalitis Syndromes

Normal or Mild Disability
Moderate Disability
Severe Disability
Death

Table 2. ANE-ss

Sophie BARRON¹, Tong Hong YEO², Terrence THOMAS²

RESULTS

• Data on 127 patients (median age 21 (range 0.4-85 years)) met inclusion criteria and were extracted from 81 articles; 53 (42%) were children ≤18 years.

• Demographics, clinical features and cerebrospinal fluid (CSF) parameters were generally similar between ANE and other encephalitis syndromes. Key clinical features were fever (94%), thrombocytopenia (69%), seizures (46%) and

• Patients with ANE were notable for an early onset of disease (Figure 1) and for poorer outcomes: 42% death/moderate-severe disability in ANE versus 13% in other encephalitis (p<0.01) (Figure 2).

• In ANE, median CSF white blood cells was 12/mm³ (0-300) and 20 (43%) had Dengue virus IgM or PCR positivity in CSF.

• "Classic" ANE neuroimaging was seen in 26 (57%) of ANE. "ANE Compatible" patients had lower ANE severity score (ANE-ss) and were more likely to have meningism or seizures, as compared to Classic ANE (Table 1).

• A Higher ANE-ss correlated well with poor outcome. (Table 2)

and Outcomes in Dengue virus ANE									
	Low risk (0-1)	Moderate risk (2-4)	High risk (5-9)	Unable to score ANE-ss					
	-	10	25	11					
, ty	-	7 (70%)	9 (36%)	2 (18%)					
ity	-	2 (20%)	2 (8%)						
	-	0	8 (32%)	1 (9%)					
	-	1 (10%)	6	8 (72%)					

Figure 1: Clinicoradiological Syndromes in Dengue Virus Encephalitis

Table 1. Patients with "Classic" ANE and "ANE Compatible" Neuroimaging.							
	"Classical" ANE	ANE Compatible	p value	OR (95% CI)			
n	26	20					
Median Age, years (Range)	22 (2.5 - 58)	18 (5 -55)	NS	NS = not significant			
Male: Female ratio	1: 0.73	1: 0.67	NS				
Clinical Features							
Median ANE-ss	6 (3-9)	4 (2-7)	0.0047				
Median Days, Onset of encephalopathy (Range)	5 (1-7)	3 (1-8)	NS				
Low Platelets (<100,000/mm ³)	21	14	NS				
Hypotension	3	5	NS				
Elevated liver enzymes	15	8	NS				
Meningism	1	6	0.0326	10.71 (1.36 - 126.9)			
Seizures	9	16	0.003	7.56 (1.79 - 24.52)			
Status epilepticus	2	3	NS				
Pyramidal signs	11	10	NS				
Extrapyramidal signs	1	5	NS				
Cranial nerve or	6	3	NS				
brainstem signs	Ŭ	J					
Ataxia	5	2	NS				
Imaging and Laborator	ry data			0 75			
Pons involvement	21	7	0.0016	9.75 (2.52 - 32.58)			
CSF white cell count	14 (0-113)	10 (0-300)	NS				
CSF protein level	0.81 (0.22-4.8)	0.80 (0.3- 2.65)	NS				
CSF Dengue positivity	12	8	NS				
Treatment and Outcome							
Immunotherapy	3	3	NS				
Moderate to Severe Disability, or Death	9 of 17 (53%)	4 of 14 (29%)	NS				

ANE onset = Median of 4 days (Range 1-8 days) (p<0.0001)

Encephalopathy (ANE) [n = 4	6, 36%]
ed Encephalomyelitis (ADEM)	[18%]
ter Encephalitis	[17%]
roimaging	[22%]
(not shown)	[14%]

SIGNIFICANCE OF FINDINGS

- We confirm that the clinicoradiological syndrome of ANE is present in Dengue virus infection.
- The pathobiology of Dengue virus ANE appears to be different to respiratory virus-related ANE (typically a cytokine storm induced encephalopathy) as there is clear evidence of an Encephalitis process.
- The majority of Dengue virus ANE patients have CSF pleocytosis and the demonstration of Dengue virus in the CSF.
- ANE-ss mirrored outcome prediction in respiratory virus-related ANE: 78% with a normal or a mild disability outcome in Medium-risk patients whilst all deaths (100%) were only seen in patients with High-risk scores.
- ANE with CSF pleocytosis should be recognized as a distinct form of ANE.
- The role of Immunotherapy (IV steroids, tocilizumab) or Therapeutic Hypothermia (common treatment strategies in respiratory virus-related ANE) has not been evaluated in Dengue virus ANE.

REFERENCES

- 1. Verma R, Sahu R, Holla V. Neurological manifestations of dengue infection: A review. Journal of the Neurological Sciences. 2014;346(1):26-34.
- 2. Kumar AS, Mehta S, Singh P, Lal V. Dengue encephalitis: "Double doughnut" sign Neurol India 2017;65:670-1.
- 3. Rathakrishnan A, Wang SM, Hu Y, Khan AM, Ponnampalavanar S, et al. (2012) Cytokine Expression Profile of Dengue Patients at Different Phases of Illness. PLoS ONE 7(12): e52215. doi:10.1371/journal.pone.0052215
- 4. Mizuguchi M. Acute Necrotizing Encephalopathy. In: Yamanouchi H, ed. Acute Encephalopathy and Encephalitis in Infancy and Its Related Disorders. First ed. St Louis, Missouri: Elsevier; 2017:87-92.
- 5. Aiba H, Mochizuki M, Kimura M, Hojo H. Predictive value of serum interleukin-6 level in influenza virus-associated encephalopathy. Neurology. 2001;57(2):295-299.
- 6. Soares CN, Marzia PS. Diagnosis criteria of dengue encephalitis. Arq Neuropsiquiatr 2014:72:263
- 7. Yamamoto H, Okumura A, Natsume J, Kojima S, Mizuguchi M. A severity score for acute necrotizing encephalopathy. Brain Dev. 2015;37(3):322-327.

CONTACT DETAILS

Email: Terrence.Thomas@singhealth.com.sg

