

The Diagnostic Utility of the Video EEG at a Tertiary Care Center of North India: A Retrospective Study

Rahul Sinha1, Sonali Singh2, Gautam Kamila3, Ashish Upadhyay4 1 Department of Pediatrics & Pediatric Neurology, Command Hospital, Chandimandir, Panchkula, India, 2 Department of Pediatrics, Institute of Neurosciences, Kolkata, India 3 Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India, 4 Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India

Introduction

- Video-electroencephalographic (VEEG) recording is one of the important diagnostic tool in Neurology practise for epilepsy diagnosis and management
- Short-term VEEG recording is economical and cost-effective since it does not require hospital admission and can reduce the cost of overnight EEG recording **Objectives**
- To study the role of short-term VEEG in detecting the nature of abnormal events and to find out the utility of VEEG in confirming or classifying the referring diagnosis. Dogulto

<u> </u>	
 During the study period, 140 EEGs were captured. Finally, 100 EEGs were analysed as part of this retrospective 	Table 1 :Variab Mean Age(year
study.	Gender Male Reasons for EE
No. of EEGs screened- 140 Excluded- 35 (Age <1 year or > 10 years)	First episode o Epileptic encep
No. of EEGs included in the study- 105	Other epilepsy Neurodevelopm ADHD)
EEGs included for final analysis- 100	Autoimmune no Paroxysmal no Others

Discussion/Conclusions

- of the referring diagnosis.
- statistically. Another observation made was that children who were on 2 or more ASMs had higher incidence of abnormal discharges on the VEEG
- Better selection of patients for routine EEG, through clinical history and comorbidities, is warranted to increase its yield.

Material & Methods

•	The study design was retrospective and hospital based which	•	The ag
	included analysis of 30 minutes of video EEG recording done		used, a
	between Jan 2021 to Jan 2022 at a tertiary care centre of North		
	India	•	Activat
•	The FFC of children in the age group of 1 10 years were		Photic
•	The LEG of chhuren in the age group of 1- to years, were		childre
	included. If the duration of artefact free recording was less than		Hyperv
	30 minutes, then the EEG was excluded from the analysis.		J I
•	Data of all 100 consecutive patients referred for VEEG between	•	All EE
	Jan 2021 to Jan 2022 were noted in excel sheet and analysed on		sixteen
	predefined variables.		placem
		1	

	100	Table no 2: EEG Characteri	stics			Table 3. EEG chara	cteristics	and anti-	seizure m	edicatio	on (ASN
	n =100	Parameters	Sleep*	Sleep and Awake*	P- value						× ·
5) ±SD	5.4±2.1	No. of EEG records(n=100)	66/100	34/100		No. of ASMs	0	1	2	3	Δ
	33(66%)	Abnormal EEG (n=58)	35/66 (53%)	23/34 (67.6%)	0.117			-	~	5	-
		EEG with focal IED(n=29)	16	13	0.357						
G referral		EEG with generalised	19	10		Number of children	16	19	52	10	3
		IED(n=29)									
unprovoked seizure	4%					Abnormal EEG	2	11	32	10	3
nalopathy	8%	*Activation procedures wer	e done as releva	ant. Children were slee	n deprived for all		(12.5%)	(57.8%)	(61.5%)	(100%)	(100%)
	60%	sleen			p aspiriou ror an						
ental disorders (ASD,	12%	racards Photic was done for	all (sloop as wall	as awaka) Eva anan a	va clasura was						
		neuformed by comparative	all (sieep as well			Focal/ Generalised	1/1	6/5	17/15	4/6	1/2
urological disorders	4%	performed by cooperative	children and p	assive eye closure was	s done for young					., -	
	40/	children by covering their	eyes by the tecl	hnician. Hyperventilatio	on was performed						
epheptic events	4%0	along with awake records in	children above 5	years of age.							
	8%					IEDs: Interictal disch	arges				

Our study emphasises on the role of short-term VEEG in the identification of nature of abnormal electrical/electro-clinical events and also assesses the utility of VEEG in confirm

The yield of EEG abnormalities was higher in children in whom both sleep and awake VEEG was obtained as compared to those with only sleep EEG, though the difference was

ge, gender, clinical diagnosis, number of antiseizure medicines (ASMs), activation proc and EEG abnormality along with demographic and clinical data were recorded.

tion procedures were done as relevant. Children were sleep deprived for all sleep re was done for all (sleep as well as awake). Eye open, eye closure was performed by coope en and passive eye closure was done for young children by covering their eyes by the tech ventilation was performed along with awake records in children above 5 years of age.

G were done on Nicolet one(Model no Nicolet one V32 amplifier), Natus Neurology USA. channel EEG recording was performed, using 10-20 International System of electrode nent with bipolar and referential montages.

	References
mation/classification	1. Nordli Jr DR. Usefulness of Video-EEG Monitoring. Epilepsia. 2006 Oct;47(
	30
s not significant	2. Delil S, Senel GB, Demiray DY, Yeni N. The role of sleep electroencephalog
	patients with new onset epilepsy. Seizure. 2015 Sep 1;31:80–3.

AL CHIL IGRESS OBER 3-7, 2022
edures
ecords.
erative nician.
A
I) profile
p value
p value
p value P<
p value P< 0.0001
p value P< 0.0001 P<
p value P< 0.0001 P< 0.0001
p value P< 0.0001 P< 0.0001
p value P< 0.0001 P< 0.0001
p value P< 0.0001 P< 0.0001 s1):26–
p value P< 0.0001 P< 0.0001 s1):26–
p value P< 0.0001 P< 0.0001 s1):26– s1):26–